MILP D'après la page de Nathann COHEN
http://steinertriples.fr/ncohen/tut/LP_examples/

Some LP Formulations
(and their Sage code)

Independent Set
Maximum set of pairwise non-adjacent vertices in a graph
p = MixedIntegerLinearProgram(maximization = True)
b = p.new_variable(binary = True)
p.set_objective( sum([b[v] for v in g]) )

for u,v in g.edges(labels = False):
    p.add_constraint( b[u] + b[v] <= 1 )

p.solve()
b = p.get_values(b)
print [v for v,i in b.items() if i]     

# Note: viewed as a boolean, 0 is False and 1.0 is True
Dominating Set
Minimum set of vertices whose neighborhood is the whole graph
Vertex Cover
Minimum Set of vertices touching each edge
Partition
Partition a set of integers into two sets whose sum is equal
Bipartite Set
Partition the graph into two independent sets
Subset Sum
Find a nonempty subset of integers with null sum
Distances
Compute the distance from vertex 0 to any other
Girth
Size of the shortest cycle
Matching
Maximum number of non-incident edges
Feedback Arc Set
Minimum set of arcs hitting all circuits
Feedback Vertex Set
Minimum set of vertices hitting all circuits
Hamiltonian Cycle
A cycle going through all vertices
3-coloration
Partition a graph into three independent sets
GCD
The gcd of a list of integers
gcd([12,15,30]) = 3
Sudoku
Fill an incomplete Sudoku grid
Get some instances of the Sudoku class and solve them, for example:
sage: S = Sudoku('\
....: 1....7.9.\
....: .3..2...8\
....: ..96..5..\
....: ..53..9..\
....: .1..8...2\
....: 6....4...\
....: 3......1.\
....: .4......7\
....: ..7...3..') ; S
+-----+-----+-----+
|1    |    7|  9  |
|  3  |  2  |    8|
|    9|6    |5    |
+-----+-----+-----+
|    5|3    |9    |
|  1  |  8  |    2|
|6    |    4|     |
+-----+-----+-----+
|3    |     |  1  |
|  4  |     |    7|
|    7|     |3    |
+-----+-----+-----+
sage: sudoku_solve_milp(S)
+-----+-----+-----+
|1 6 2|8 5 7|4 9 3|
|5 3 4|1 2 9|6 7 8|
|7 8 9|6 4 3|5 2 1|
+-----+-----+-----+
|4 7 5|3 1 2|9 8 6|
|9 1 3|5 8 6|7 4 2|
|6 2 8|7 9 4|1 3 5|
+-----+-----+-----+
|3 5 6|4 7 8|2 1 9|
|2 4 1|9 3 5|8 6 7|
|8 9 7|2 6 1|3 5 4|
+-----+-----+-----+